<u>Materials</u>. Materials shall be according to the following Articles of Section 1000 - Materials

	Item	Article/Section
(a)	Ground Rod	1087.01(b)
	Copper Ground Wire	
(c)	Access Well	••••
, ,	1087.01(c)	

CONSTRUCTION REQUIREMENTS

General. All connections to ground rods, structural steel or fencing shall be made with exothermic welds. Where such connections are made to insulated conductors, the connection shall be wrapped with at least 4 layers of electrical tape extended 152.4 mm (six inches) onto the conductor insulation.

Ground rods shall be driven so that the tops of the rod are 609.6 mm (24 inches) below finished grade. Where indicated, ground wells shall be included to permit access to the rod connections.

Where ground conditions, such as rock, preclude the installation of the ground rod, the ground rod may be deleted with the approval of the Engineer.

Where a ground field of "made" electrodes is provided, such as at control cabinets, the exact locations of the rods shall be documented by dimensioned drawings as part of the Record Drawings.

Ground rod connection shall be made by exothermic welds. Ground wire for connection to foundation steel or as otherwise indicated shall be stranded uncoated bare copper in accordance the applicable requirements of ASTM Designation B-3 and ASTM Designation B-8 and shall be included in this item. Unless otherwise indicated, the wire shall not be less than No. 2 AWG.

Where connections are made to epoxy coated reinforcing steel, the epoxy coating shall be sufficiently removed to facilitate the exothermic weld.

<u>Method Of Measurement.</u> Ground rods shall be counted, each. Ground wires and connection of ground rods at poles shall be included in this pay item.

Basis Of Payment. This item shall be paid at the contract unit price each for **GROUND ROD**, of the diameter and length indicated which shall be payment in full for the material and work described herein.

UNDERGROUND RACEWAYS

Effective: January 1, 2002

Revise Article 810.03 of the Standard Specifications to read:

"Installation. All underground conduit shall have a minimum depth of 700 mm (30-inches) below the finished grade."

Add the following to Article 810.03 of the Standard Specifications:

"All metal conduit installed underground shall be Rigid Metal Conduit unless otherwise indicated on the plans."

EXPOSED RACEWAYS

Effective: March 1, 2003

Add the following to Article 811.03(a)(3) of the Standard Specifications:

"Where PVC coated conduit is utilized, all conduit fittings, couplings and clamps shall be PVC coated. All other mounting hardware and appurtenances shall be stainless steel."

Add the following to Article 811.03(b) of the Standard Specifications:

"The personnel installing the PVC coated conduit must be trained and certified by the PVC coated conduit Manufacturer or Manufacturer's representative to install PVC coated conduit. Documentation demonstrating this requirement must be submitted for review and approval."

"All conduit fittings, couplings and clamps shall be PVC coated. All other mounting hardware and appurtenances shall be stainless steel."

Revise Article 1088.01(a) of the Standard Specifications to read:

"Couplings and fittings shall meet ANSI Standard C80.5 and U.L. Standard 6. Elbows and nipples shall conform to the specifications for conduit. All fittings and couplings for rigid conduit shall be of the threaded type."

Revise Article 1088.01(a)(1) of the Standard Specifications to read:

"Rigid Steel Conduit. Rigid steel conduit shall be galvanized and manufactured according to UL Standard 6 and ANSI Standard C 80.1."

Revise Article 1088.01(a)(3) of the Standard Specifications to read:

- "a. PVC Coated Steel Conduit. The PVC coated rigid metal conduit shall be UL Listed (UL 6). The PVC coating must have been investigated by UL as providing the primary corrosion protection for the rigid metal conduit. Ferrous fittings for general service locations shall be UL Listed with PVC as the primary corrosion protection. Hazardous location fittings, prior to plastic coating shall be UL listed.
- b. The PVC coating shall have the following characteristics:

Hardness:

85+ Shore A Durometer

Dielectric

400V/mil @ 60 Hz

Strength:

Aging:

1,000 Hours Atlas Weatherometer

Temperature

The PVC compound shall conform at 0 □F. to Federal Specifications PL-406b, Method 2051, Amendment 1 of 25 September 1952 (ASTM D

746)

Elongation:

200%

- c. The exterior and interior galvanized conduit surface shall be chemically treated to enhance PVC coating adhesion and shall also be coated with a primer before the PVC coating to ensure a bond between the zinc substrate and the PVC coating. The bond strength created shall be greater than the tensile strength of the plastic coating.
- d. The nominal thickness of the PVC coating shall be 1 mm (40 mils). The PVC exterior and urethane interior coatings applied to the conduit shall afford sufficient flexibility to permit field bending without cracking or flaking at temperatures above -1°C (30°F).
- e. An interior urethane coating shall be uniformly and consistently applied to the interior of all conduit and fittings. This internal coating shall be a nominal 2 mil thickness. The interior coating shall be applied in a manner so there are no runs, drips, or pinholes at any point. The coating shall not peel, flake, or chip off after a cut is made in the conduit or a scratch is made in the coating.
- f. The PVC conduit shall pass the following tests:

Exterior PVC Bond test RN1:

Two parallel cuts 13 mm (1/2 inch) apart and 40 mm (1 1/2 inches) in length shall be made with a sharp knife along the

longitudinal axis. A third cut shall be made perpendicular to and crossing the longitudinal cuts at one end. The knife shall then be worked under the PVC coating for 13 mm (1/2 inch) to free the coating from the metal.

Using pliers, the freed PVC tab shall be pulled with a force applied vertically and away from the conduit. The PVC tab shall tear rather than cause any additional PVC coating to separate from the substrate.

Boil Test:

Acceptable conduit coating bonds (exterior and interior) shall be confirmed if there is no disbondment after a minimum average of 200 hours in boiling water or exposure to steam vapor at one atmosphere. The RN1 Bond Test and the Standard Method for Measuring Adhesion by Tape Test shall be utilized.

Exterior Adhesion. In accordance with ASTM D870, a 6" length of conduit test specimen shall be placed in boiling water. The specimen shall be periodically removed, cooled to ambient temperature and immediately tested according to the bond test (RN1). When the PVC coating separates from the substrate, the boil time to failure in hours shall be recorded.

Interior Adhesion. In accordance with ASTM D3359, a 6" conduit test specimen shall be cut in half longitudinally and placed in boiling water or directly above boiling water with the urethane surface facing down. The specimen shall be periodically removed, cooled to ambient temperature and tested in accordance with the Standard Method of Adhesion by Tape Test (ASTM D3359). When the coating disbonds, the time to failure in hours shall be recorded.

Heat/Humidity Test:

Acceptable conduit coating bonds shall be confirmed by a minimum average of 30 days in the Heat and Humidity Test. The RN1 Bond Test and the Standard Method for Measuring Adhesion by Tape Test shall be utilized.

Exterior Adhesion. In accordance with ASTM D1151, D1735, D2247 and D4585, conduit specimens shall be placed in a heat and humidity environment where the

temperature is maintained at 150°F (66°C) and 95% relative humidity. The specimens shall be periodically removed and a bond test (RN1) performed. When the PVC coating separates from the substrate, the exposure time to failure in days shall be recorded.

Interior Adhesion. In accordance with ASTM D3359, conduit specimens shall be placed in a heat and humidity environment where the temperature is maintained at 150°F (66°C) and 95% relative humidity. When the coating disbonds, the time to failure in hours shall be recorded.

TRENCH AND BACKFILL FOR ELECTRICAL WORK

Effective: January 1, 2002

Revise the first sentence of Article 815.03(a) of the Standard Specifications to read:

"Trench. Trenches shall have a minimum depth of 760 mm (30 in.) or as otherwise indicated on the plans, and shall not exceed 300 mm (12 in.) in width without prior approval of the Engineer."

Revise Article 1066.05 of the Standard Specifications to read:

"Underground Cable Marking Tape. The tape shall be 150 mm (6 in.) wide; consisting of 0.2 mm (8 mil) polyethylene according to ASTM D882, and ASTM D2103.

The tape shall be red with black lettering or red with silver lettering reading "CAUTION – ELECTRICAL LINE BURIED BELOW".

The tape shall have reinforced metallic detection capabilities consisting of a woven reinforced polyethylene tape with a metallic core or backing."

WIRE AND CABLE

Effective: January 1, 2002

Revise the second sentence of the first paragraph of Article 1066.02(a) to read:

"The cable shall be rated at a minimum of 90°C dry and 75°C wet and shall be suitable for installation in wet and dry locations, and shall be resistant to oils and chemicals."

Revise the second paragraph of Article 1066.02(b) to read:

"Uncoated conductors shall be according to ASTM B3, ICEA S-95-658/NEMA WC70, and UL Standard 44. Coated conductors shall be according to ASTM B 33, ASTM B 8, ICEA S-95-658/NEMA WC70 and UL Standard 44."

Revise the third paragraph of Article 1066.02(b) to read:

"All conductors shall be stranded. Stranding meeting ASTM B 8, ICEA S-95-658/NEMA WC70 and UL Standard 44. Uncoated conductors meeting ASTM B 3, ICEA S-95-658/NEMA WC70 and UL Standard 44."

Revise the first sentence of Article 1066.03(a)(1) to read:

"General. Cable insulation designated as XLP shall incorporate cross-linked polyethylene (XLP) insulation as specified and shall meet or exceed the requirements of ICEA S-95-658, NEMA WC70, U.L. Standard 44."

Add the following to Article 1066.03(a)(1) of the Standard Specifications:

"The cable shall be rated 600 volts and shall be UL Listed Type RHH/RHW/USE."

Revise the Aerial Electric Cable Properties table of Article 1066.03(a)(3) to read:

Aerial Electric Cable Properties

Phase Conductor			Messenger wire			
Size	Stranding	Average		Minimum	Stranding	
AWG		Insulation		Size		
	<u> </u>	Thickness		AWG		
		mm mils				
6	7	1.1	(45)	6	6/1	
4	7	1.1	· (45)	4	6/1	
2	7	1.1	(45)	2	6/1	
1/0	19	1.5	(60)	1/0	6/1	
2/0	19	1.5	(60)	2/0	6/1	
3/0	19	1.5	(60)	3/0	6/1	
4/0	19	1.5	(60)	4/0	6/1	

Revise the first paragraph of Article 1066.03(b) to read:

"EPR Insulation. Cable insulation shall incorporate ethylene propylene rubber (EPR) as specified and the insulation shall meet or exceed the

requirements of ICEA S-95-658, NEMA Standard Publication No. WC70, and U.L. Standard 44, as applicable."

Add the following to Article 1066.03(b) of the Standard Specifications:

"Cable sized No. 2 AWG and smaller shall be U.L. listed Type RHH/RHW and may be Type RHH/RHW/USE. Cable sized larger than No. 2 AWG shall be U.L. listed Type RHH/RHW/USE."

Revise Article 1066.04 to read:

"Aerial Cable Assembly. The aerial cable shall be an assembly of insulated aluminum conductors according to Section 1066.02 and 1066.03. Unless otherwise indicated, the cable assembly shall be composed of three insulated conductors and a steel reinforced bare aluminum conductor (ACSR) to be used as the ground conductor. Unless otherwise indicated, the code word designation of this cable assembly is "Palomino". The steel reinforced aluminum conductor shall conform to ASTM B-232. The cable shall be assembled according to ANSI/ICEA S-76-474."

Revise the second paragraph of Article 1066.05 to read:

"The tape shall have reinforced metallic detection capabilities consisting of a woven reinforced polyethylene tape with a metallic core or backing."

Revise Article 1066.08 to read:

"Electrical Tape. Electrical tape shall be all weather vinyl plastic tape resistant to abrasion, puncture, flame, oil, acids, alkalies, and weathering, conforming to Federal Specification MIL-I-24391, ASTM D1000 and shall be listed under UL 510 Standard. Thickness shall not be less than 0.215 mm (8.5 mils) and width shall not be less than 20 mm (3/4-inch)."

LUMINAIRE

Effective: March 1, 2003

Add the following to first paragraph of Article 1067.01(a)(3) of the Standard Specifications:

"The reflector shall not be altered by paint or other opaque coatings which would cover or coat the reflecting surface. Control of the light distribution

by any method other than the aforementioned clear protective coating that will alter the reflective properties of the reflecting surface is unacceptable"

Add the following to Article 1067.01(a)(5)a. of the Standard Specifications:

"The ballast shall be a High Pressure Sodium, high power factor, constant wattage auto-regulator, lead type (CWA) for operation on a nominal 240 volt system."

Revise the second sentence of the second paragraph of Article 1067.01(a)(5)c. of the Standard Specifications:

"The ballast shall be designed to ANSI Standards and shall be designed and rated for operation on a nominal 240 volt system. The ballast shall provide positive lamp ignition at the input voltage of 216 volts. It shall operate the lamp over a range of input voltages from 216 to 264 volts without damage to the ballast. It shall provid_lamp operation within lamp specifications for rated lamp life at input design voltage range. Operating characteristics shall produce output regulation not exceeding the following values:

Nominal Ballast Wattage	Maximum Ballast Regulation
750	25%
400	25%
310	26%
250	22%
150	22%

For this measure, regulation shall be defined as the following:

Ballast Regulation =
$$\frac{W_{LampH} - W_{LampL}}{W_{LampN}} \times 100$$

where:

 W_{LampH} = lamp watts at +10% line voltage (264v)

 W_{LampL} = lamp watts at - 10% line voltage (216v)

 $W_{lampN} = \text{lamp watts at 240v}$ "

Revise the third sentence of the second paragraph of Article 1067.01(a)(5)c. of the Standard Specifications to read:

"Ballast losses, based on cold bench tests, shall not exceed the following values:

Nominal Ballast Wattage	Maximum Ballast Losses
750	16.0%
400	16.0%
310	19.0%
250	17.5%
150	26.0%

Ballast losses shall be calculated based on input watts and lamp watts at nominal system voltage as indicated in the following equation:

Ballast Losses =
$$\frac{W_{Line} - W_{Lamp}}{W_{Lamp}} \times 100$$

where:

 W_{line} = line watts at 240v

 $W_{lamp} = lamp$ watts at 240v

Add the following to Article 1067.01(a)(5)c. of the Standard Specifications:

"Ballast output to lamp. At nominal system voltage and a lamp voltage of 100v, the ballast shall deliver a lamp wattage within $\pm 2\%$ of the nominal lamp wattage. Example: For a 400w luminaire, the ballast shall deliver 400 watts $\pm 2\%$ at a lamp voltage of 100v for the nominal system voltage of 240v."

Add the following to Article 1067.01(a)(5)c. of the Standard Specifications:

"Ballast output over lamp life. Over the life of the lamp the ballast shall produce an average output wattage of the nominal lamp rating $\pm 3\%$. Lamp wattage readings shall be taken at 5-volt increments throughout the ballast trapezoid. The lamp wattage values shall then be averaged within the trapezoid and shall be within $\pm 3\%$ of the nominal ballast rating. Submittal documents shall include a tabulation of the lamp wattage vs. lamp voltage readings. Example: For a 400w luminaire, the averaged lamp wattage reading shall not exceed the range of 388 to 412 watts"

Revise the first paragraph of Article 1067.01(a)(7) of the Standard Specifications to read:

"Independent testing of luminaires shall be required whenever the quantity of luminaires of a given wattage and distribution, as indicated on the plans, is 50 or more. For each luminaire type to be so tested, one luminaire plus one luminaire for each 50 luminaires shall be tested i.e. 75 luminaires would dictate that 2 to be tested; 135 luminaires would dictate that three be tested."

Add the following to Article 1067.01(a)(7) of the Standard Specifications:

"The Contractor shall be responsible for all costs associated with the specified testing, including but not limited to shipping, travel and lodging costs as well as the costs of the tests themselves, all as part of the bid unit price for this item. Travel, lodging and other associated costs for travel by the Engineer shall be direct-billed to or shall be pre-paid by the Contractor, requiring no direct reimbursement to the Engineer or the independent witness, as applicable"

Add the following to Article 1067.01(a)(7) of the Standard Specifications:

"d. Engineer Factory Selection and Witness of Manufacturer Testing:
At the Manufacturer's facility, the Engineer shall select the
luminaires to be tested and shall be present during the testing
process. The Contractor shall schedule travel by the Engineer to and
from the Manufacturer's laboratory to witness the performance of
the required tests."

Revise Article 1067.02(a)(1) of the Standard Specifications to read:

"The lamps shall be of the clear type and shall have a color of 2050° to 2100° Kelvin."

Add the following table(s) to Article 1067 of the Standard Specifications:

IDOT DISTRICT 1 LUMINAIRE PERFORMANCE TABLE

GIVEN CONDITIONS				
ROADWAY DATA	Pavement Width with 3.4 m median Number of Lanes 1.E.S. Surface Classification			
	Q-Zero Value			
LIGHT POLE DATA	Mounting Height			
	Mast Arm Length			
	Pole Set-Back From Edge of Pavement			
LUMINAIRE DATA	Lamp Type			
	Lamp Lumens			
	I.E.S. Vertical Distribution			
	I.E.S. Control Of Distribution			
	I.E.S. Lateral Distribution			

	Total Light Loss Factor
LAYOUT DATA	Spacing Configuration Luminaire Overhang over edge of pavement
NOTE: Variations from the variations will be subject to	e above specified I.E.S. distribution pattern may be requested and acceptance of review by the Engineer based on how well the performance requirements are met.
	PERFORMANCE REQUIREMENTS
······································	
	e requirements shall be the minimum acceptable standards of photometric performance the given conditions listed above.
	e requirements shall be the minimum acceptable standards of photometric performance the given conditions listed above.
for the luminaire, based on	e requirements shall be the minimum acceptable standards of photometric performance

LAMPS

Effective: January 1, 2002

Revise Article 1067.02(a)(1) of the Standard Specifications to read:

"The lamps shall be of the clear type and shall have a color of 2050° to 2100° Kelvin."

LIGHT POLES

Effective: March 1, 2003

Revise the fifth sentence of Article 1069.01(b)(2)d of the Standard Specifications to read:

"A 9.525 mm (3/8 in.) – 16 tapped hole shall be provided in the frame for attaching a mechanical grounding connector."

Revise the third sentence of Article 1069.01(c)(2)b5 of the Standard Specifications to read:

"A $9.525 \text{ mm} (3/8 \text{ in.}) - 16 \text{ tapped hole shall be provided in the frame for attaching a mechanical grounding connector."$

STAINLESS STEEL JUNCTION BOX

Effective: January 1, 2002

Revise the second sentence of the seventh paragraph of Article 1088.04 of the Standard Specifications to read:

"The gasket shall be extruded directly onto the junction box cover."

UNIT DUCT

Effective: October 1, 2002

Revise the second paragraph of Article 816.03(b) to read:

"The unit duct shall be installed at a minimum depth of 760 mm (30-inches) unless otherwise directed by the Engineer."

Revise Article 1066.01 to read:

"1066.01 Unit Duct. The unit duct shall be an assembly of insulated conductors which are factory pre-installed in a coilable nonmetallic conduit. The polyethylene duct shall be extruded directly over the cable at the factory in long continuous lengths. The unit duct shall be according to NEC Article 354 and be UL Listed."

Revise Article 1088.01(c) to read:

"(c) Coilable Nonmetallic Conduit.

Polyethylene Duct. The duct shall be a plastic duct which is intended for underground use and can be manufactured and coiled or reeled in continuous transportable lengths and uncoiled for further processing and/or installation without adversely affecting its properties of performance.

The duct shall be made of high density polyethylene which shall meet the requirements of ASTM D 2447, for schedule 40. The duct shall be composed of black high density polyethylene meeting the requirements of ASTM D 3350, Class C, Grade P33. The wall thickness shall be in accordance with Table 2 for ASTM D 2447.

Duct dimensions shall conform to the following table:

Nom. Duct Diameter mm In		Nom. Outside Diameter		Min. Wall Thickness	
		mm	in	m m	in
27	1	33.4	1.315	3.4	0.133
35	1.25	42.2	1.660	3.6	0.140

41	1.5	48.3	1.900	3.7	0.145	
53	2.0	60.3	2.375	3.9	0.154	

Performance Tests. Polyethylene Duct testing procedures and test results shall meet the requirements of ASTM D 3485. Certified copies of the test report shall be submitted to the Engineer prior to the installation of the duct. Duct crush test results shall meet or exceed the following requirements:

Duct Diameter			e required to ample 50%
Mm	in	N	lbs
27	1	5337	1200
35	1.25	4937	1110
41	1.5	4559	1025
53	2.0	3780	850

MAINTENANCE OF LIGHTING SYSTEMS

Effective: March 1, 2003

Replace Article 801.12 of the Standard Specifications with the following:

Effective the date the Contractor's activities (electrical or otherwise) at the job site begin, the Contractor shall be responsible for the proper operation and maintenance of all existing and proposed lighting systems which are part of, or which may be affected by the work until final acceptance or as otherwise determined by the Engineer.

Before performing any excavation, removal, or installation work (electrical or otherwise) at the site, the Contractor shall initiate a request for a maintenance transfer and preconstruction inspection, as specified elsewhere herein, to be held in the presence of the Engineer and a representative of the party or parties responsible for maintenance of any lighting systems which may be affected by the work. The request for the maintenance preconstruction inspection shall be made no less than seven (7) calendar days prior to the desired inspection date.

Existing lighting systems, when depicted on the plans, are intended only to indicate the general equipment installation of the systems involved and shall not be construed as an exact representation of the field conditions. It remains the Contractor's responsibility to visit the site to confirm and ascertain the exact condition of the electrical equipment and systems to be maintained.

Maintenance of Existing Lighting Systems

Existing lighting systems. Existing lighting systems shall be defined as any lighting system or part of a lighting system in service prior to this contract. The

contract drawings indicate the general extent of any existing lighting, but whether indicated or not, it remains the Contractor's responsibility to ascertain the extent of effort required for compliance with these specifications and failure to do so will not be justification for extra payment or reduced responsibilities.

Extent of Maintenance.

Partial Maintenance. Unless otherwise 'indicated, if the number of circuits affected by the contract is equal to or less than 40% of the total number of circuits in a given controller and the controller is not part of the contract work, the Contractor needs only to maintain the affected circuits. The affected circuits shall be isolated by means of in-line waterproof fuse holders as specified elsewhere and as approved by the Engineer.

Full Maintenance. If the number of circuits affected by the contract is greater than 40% of the total number of circuits in a given controller, or if the controller is modified in any way under the contract work, the Contractor shall maintain the entire controller and all associated circuits.

Maintenance of Proposed Lighting Systems

Proposed Lighting Systems. Proposed lighting systems shall be defined as any lighting system or part of a lighting system which is to be constructed under this contract.

The Contractor shall be fully responsible for maintenance of all items installed under this contract. Maintenance shall include, but not be limited to, any equipment failures or malfunctions as well as equipment damage either by the motoring public, Contractor operations, or other means. The potential cost of replacing or repairing any malfunctioning or damaged equipment shall be included in the bid price of this item and will not be paid for separately.

Lighting System Maintenance Operations

The Contractor's responsibility shall include all applicable responsibilities of the Electrical Maintenance Contract, State of Illinois, Department of Transportation, Division of Highways, District One. These responsibilities shall include the maintenance of lighting units (including sign lighting), cable runs and lighting controls. In the case of a pole knockdown or sign light damage caused by normal vehicular traffic, the Contractor shall promptly clear the lighting unit and circuit discontinuity and restore the system to service.

Responsibilities shall also include weekly night-time patrol of the lighting system, with patrol reports filed immediately with the Engineer and with deficiencies corrected within 24 hours of the patrol. Patrol reports shall be presented on standard forms as designated by

the Engineer. Uncorrected deficiencies may be designated by the Engineer as necessitating emergency repairs as described elsewhere herein.

The following chart lists the maximum response, service restoration, and permanent repair time the Contractor will be allowed to perform corrective action on specific lighting system equipment.

INCIDENT OR PROBLEM	SERVICE RESPONSE TIME	SERVICE RESTORATION TIME	PERMANENT REPAIR TIME
Control cabinet out	1 hour	4 hours	7 Calendar days
Hanging mast arm	1 hour to clear	na	7 Calendar days
Radio problem	1 hour	4 hours	7 Calendar days
Motorist caused damage or leaning light pole 10 degrees or more	I hour to clear	4 hours	7 Calendar days
Circuit out - Needs to reset breaker	1 hour	4 hours	na
Circuit out - Cable trouble	1 hour	24 hours	21 Calendar days
Outage of 3 or more successive lights	1 hour	4 hours	na
Outage of 75% of lights on one tower	I hour	4 hours	na
Outage of light nearest RR crossing approach, Islands and gores	1 hour	4 hours	na
Outage (single or multiple) found on night outage survey or reported to EMC	na	na	7 Calendar days
Navigation light outage	na	na	24 hours

- Service Response Time -- amount of time from the initial notification to the Contractor until a patrolman physically arrives at the location.
- Service Restoration Time amount of time from the initial notification to the Contractor until the time the system is fully operational again (In cases of motorist caused damage the undamaged portions of the system are operational.)
- Permanent Repair Time amount of time from initial notification to the Contractor until the time permanent repairs are made if the Contractor was required to make temporary repairs to meet the service restoration requirement.

Failure to provide this service will result in liquidated damages of \$500 per day per occurrence. In addition, the Department reserves the right to assign any work not completed within this timeframe to the Electrical Maintenance Contractor. All costs associated to repair this uncompleted work shall be the responsibility of the Contractor. Failure to pay these costs to the Electrical Maintenance Contractor within one month after the incident will result in additional liquidated damages of \$500 per month per occurrence. Unpaid bills will be deducted from the cost of the Contract. Repeated failures and/or a gross failure of maintenance shall result in the State's Electrical

Maintenance Contractor being directed to correct all deficiencies and the resulting costs deducted from any monies owed the contractor.

Damage caused by the Contractor's operations shall be repaired at no additional cost to the Contract.

Operation of Lighting

The lighting shall be operational every night, dusk to dawn. Duplicate lighting systems (such as temporary lighting and proposed new lighting) shall not be operated simultaneously. Lighting systems shall not be kept in operation during long daytime periods. The contractor shall demonstrate to the satisfaction of the Engineer that the lighting system is fully operational prior to submitting a pay request. Failure to do so will be grounds for denying the pay request.

Basis of Payment. Maintenance of lighting systems shall be paid for at the contract unit price per calendar month or fraction thereof for MAINTENANCE OF LIGHTING SYSTEM, which shall include all work as described herein.

TRAFFIC SIGNAL SPECIFICATIONS

Effective: January 1, 2002

Revised. May 22, 2002

These Traffic Signal Special Provisions and the "District 1 Standard Traffic Signal Design Details" supplement the requirements of the State of Illinois "Standard Specifications for Road and Bridge Construction." The intent of these Special Provisions is to prescribe the materials and construction methods commonly used for traffic signal installations. All material furnished shall be new. The locations and the details of all installations shall be as indicated on the Plans or as directed by the Engineer. The work to be done under this contract consists of furnishing and installing all traffic signal work as specified in the Plans and as specified herein in a manner acceptable and approved by the Engineer.

SECTION 720 SIGNING

MAST ARM SIGN PANELS.

Add the following to Section 720,02 of the Standard Specifications:

Signs attached to poles or posts (such as mast arm signs) shall have mounting brackets and sign channels which are equal to and completely interchangeable with those used by the District Sign Shops. Signfix Aluminum Channel Framing System is currently recommended, but other brands of mounting hardware are acceptable based upon the Department's approval

SECTION 800 ELECTRICAL

INSPECTION OF ELECTRICAL SYSTEMS.

Add the following to Section 802.01 of the Standard Specifications:

All cabinets including temporary traffic signal cabinets shall be assembled by an approved equipment supplier in District One. The Department reserves the right to request any controller and cabinet to be tested at the equipment supplier facilities prior to field installation, at no extra cost to this contract. All railroad interconnected (including temporary railroad interconnect) controllers and cabinets shall be new, built, tested and approved by the controller equipment vendor, in the vendor's District One facility, prior to field installation. The vendor shall provide the technical equipment and assistance as required by the Engineer to fully test this equipment.

DAMAGE TO TRAFFIC SIGNAL SYSTEM.

Revise Section 802.02 of the Standard Specifications to read:

Any damaged equipment or equipment not operating properly from any cause whatsoever shall be repaired with new equipment provided by the Contractor at no additional cost to the Contract and or owner of the traffic signal system, all as approved by the Engineer. Final repairs or replacement of damaged equipment must meet the approval of the Engineer prior to or at the time of final inspection otherwise the traffic signal installation will not be accepted. Cable splices outside the controller cabinet shall not be allowed.

RESTORATION OF WORK AREA.

Add to Section 802 of the Standard Specifications:

Restoration of the traffic signal work area shall be included in the related pay items such as foundation, conduit, handhole, trench and backfill, etc. All roadway surfaces such as shoulders, medians, sidewalks, pavement, etc. shall be replaced in kind. All damage to moved tawns shall be replaced with an approved sod, and all damage to unmoved fields shall be seeded. Restoration of the work area shall be incidental to the contract without any extra compensation allowed to the Contractor.

SUBMITTALS.

Revise Section 802.04 of the Standard Specifications to read:

The Contractor shall provide:

- a. All material approval requests shall be submitted a minimum of seven (7) days prior to the delivery of equipment to the job site, or within 30 consecutive calendar days after the contract is awarded, or within 15 consecutive calendar days after the preconstruction meeting, whichever is first.
- b. Seven (7) copies of a letter from the Traffic Signal Contractor listing the manufacturer's name and model numbers of the proposed equipment and stating that the proposed equipment meets all contract requirements. The letter will be reviewed by the Traffic Design Engineer to determine whether the equipment to be used is approvable. The letters will be stamped as approved or not approved accordingly and returned to the Contractor.
- c. One (1) copy of material catalog cuts.
- d. Seven (7) copies of mast arm poles and assemblies.
- e. The contract number or permit number, project location/limits and corresponding pay code number must be on each sheet of the letter, material catalog cuts and mast arm poles and assemblies drawings as required in items b, c and d.
- f. Exceptions, Deviations and Substitutions. In general, exceptions to and deviations from the requirements of the Contract Documents will not be allowed. It is the Contractor's responsibility to note any deviations from Contract requirements at the time of submittal and to make any requests for deviations in writing to the Engineer. In general, substitutions will not be acceptable. Requests for substitutions must demonstrate that the proposed substitution is superior to the material or equipment required by the Contract Documents. No exceptions, deviations or substitutions will be permitted without the approval of the Engineer.

MAINTENANCE AND RESPONSIBILITY.

Revise Section 802.07 of the Standard Specifications to read:

a) Existing traffic signal installations and/or any electrical facilities at all or various locations may be altered or reconstructed totally or partially as part of the work on this Contract. The Contractor is hereby advised that all traffic control equipment, presently installed at these locations, may be the property of the State of Illinois, Department of Transportation, Division of Highways, County, Private Developer, or the Municipality in which they are located. Once the Contractor has begun any work on any portion of the project all traffic signals within the limits of this contract or those which have the item "Maintenance of Existing Traffic Signal Installation", "Temporary Traffic Signal Installation(s)" and/or "Maintenance of Existing Flashing Beacon Installation", shall

become the full responsibility of the Contractor. The Contractor shall supply the engineer and the Department's Electrical Maintenance Contractor a 24-hour emergency contact name and telephone number.

- When the project has a pay item for "Maintenance of Existing Traffic Signal Installation". "Temporary Traffic Signal Installation(s)" and/or "Maintenance of Existing Flashing Beacon Installation", the Contractor must notify both the Area Traffic Signal Maintenance and Operations Engineer at (847) 705-4139 and the Department's Electrical Maintenance Contractor, of their intent to begin any physical construction work on the Contract or any portion thereof. This notification must be made a minimum of seven (7) working days prior to the start of construction to allow sufficient time for inspection of the existing traffic signal installation(s) and transfer of maintenance to the Contractor. If work is started prior to an inspection, maintenance of the traffic signal installation(s) will be transferred to the Contractor without an inspection. The Contractor will become responsible for repairing or replacing all equipment that is not operating properly or is damaged at no cost to the owner of the traffic signal. Final repairs or replacement of damaged equipment must meet the approval of the Engineer prior to or at the time of final inspection otherwise the traffic signal installation will not be accepted.
- c) Contracts such as pavement grinding or patching which result in the destruction of traffic signal loops do not require maintenance transfer, but require a notification of intent to work and an inspection. A minimum of seven (7) working days prior to the loop removal, the Contractor shall notify the Area Traffic Signal Maintenance and Operations Engineer at (847) 705-4139 and the Department's Electrical Maintenance Contractor, at which time arrangements will be made to adjust the traffic controller timing to compensate for the absence of detection. See additional requirements in these specifications under Inductive Loop Detector.
- d) The Contractor is advised that the existing and/or temporary traffic signal installation must remain in operation during all construction stages, except for the most essential down time. Any shutdown of the traffic signal installation, which exceeds fifteen (15) minutes must have prior approval of the Engineer. Approval to shutdown the traffic signal installation will only be granted during the period extending from 10:00 a.m. to 3.00 p.m. on weekdays. Shutdowns shall not be allowed during inclement weather or holiday periods.
- The Contractor shall be fully responsible for the safe and efficient operation of the traffic signals. Any inquiry, complaint or request by the Department, the Department's Electrical Maintenance Contractor or the public, shall be investigated and repairs begun within one hour. Failure to provide this service will result in liquidated damages of \$500 per day per occurrence. In addition, the Department reserves the right to assign any work not completed within this timeframe to the Electrical Maintenance Contractor. All costs associated to repair this uncompleted work shall be the responsibility of the Contractor. Failure to pay these costs to the Electrical Maintenance Contractor within one month after the incident will result in additional liquidated damages of \$500 per month per occurrence. Unpaid bills will be deducted from the cost of the Contract. The District's Electrical Maintenance Contractor may inspect any signalizing device on the Department's highway system at any time without notification.

TRAFFIC SIGNAL INSPECTION (TURN-ON).

Revise Section 802.10 of the Standard Specifications to read:

It is the intent to have all electric work completed and equipment field tested by the vendor prior to the Department's "turn-on" field inspection. If in the event the Engineer determines work is not complete and the inspection will require more than two (2) hours to complete, the inspection shall be canceled and the Contractor will be required to reschedule at another date. The maintenance of the traffic signals will not be accepted until all punch list work is corrected and re-inspected.

When the road is open to traffic, except as otherwise provided in Section 850 of the Standard Specifications, the Contractor may request a turn-on and inspection of the completed traffic signal installation at each separate location. This request must be made to the Area Traffic Signal Maintenance and Operations Engineer at (847) 705-4139 a minimum of seven (7) working days prior to the time of the requested inspection. The Department will not grant a field inspection until notification is provided from the Contractor that the equipment has been field tested and the intersection is operating according to Contract requirements. The Department's facsimile number is (847) 705-4089.

The Contractor must have all traffic signal work completed and the electrical service installation connected by the utility company prior to requesting an inspection and turn-on of the traffic signal installation. The Contractor shall be responsible to provide a police officer to direct traffic at the time of testing.

The Contractor shall provide a representative from the control equipment vendor's office to attend the traffic signal inspection for both permanent and temporary traffic signal turn-ons. Upon demonstration that the signals are operating and all work is completed in accordance with the Contract and to the satisfaction of the Engineer, the Engineer will then allow the signals to be placed in continuous operation. The Agency that is responsible for the maintenance of each traffic signal installation will assume the maintenance upon successful completion of this inspection.

The District requires the following from the Contractor at traffic signal turn-ons.

- 1. One set of signal plans of record with field revisions marked in red ink.
- 2. Notification from the Contractor and the equipment vendor of satisfactory field testing.
- 3. A knowledgeable representative of the controller equipment supplier shall be required at the traffic signal turn-on. The representative shall be knowledgeable of the cabinet design and controller functions.
- 4. A copy of the approved material letter.
- 5. One (1) copy of the operation and service manuals of the signal controller and associated control equipment.
- 6. Five (5) copies (280 mm X 430 mm) 11" x 17" of the cabinet wiring diagrams.
- 7. The controller manufacturer shall provide a printer at the turn-on to supply a printed form, not to exceed (280 mm X 430 mm) 11" x 17" for recording the traffic signal controller's timings; backup timings; coordination splits, offsets, and cycles; TBC Time of Day, Week and Year Programs; Traffic Responsive Program, Detector Phase Assignment, Type and Detector Switching; and any other functions programmable from the keyboard. The form shall include a location, date, manufacturer's name, controller model and software version. The form shall be approved by the Engineer and a minimum of three (3) copies must be furnished at each turn-on. The manufacturer must provide all programming information used within the controller at the time of turn-on.

Acceptance of the traffic signal equipment by the Department shall be based upon inspection results at the traffic signal "turn on." If approved, traffic signal acceptance shall be verbal at the "turn on" inspection followed by written correspondence from the Engineer. The Contractor shall be responsible for all traffic signal equipment and associated maintenance thereof until Departmental acceptance is granted.

All equipment and/or parts to keep the traffic signal installation operating shall be furnished by the Contractor. No spare traffic signal equipment is available from the Department.

All punch list work shall be completed within two (2) weeks after the final inspection. The Contractor shall notify the Electrical Maintenance Contractor to inspect all punch list work. Failure to meet these time constraints shall result in liquidated damage charges of \$500 per month per incident.

All cost of work and materials required to comply with the above requirements shall be included in the pay item bid prices, under which the subject materials and signal equipment are paid, and no additional compensation will be allowed. Materials and signal equipment not complying with the above requirements shall be subject to removal and disposal at the Contractor's expense.

LOCATING UNDERGROUND FACILITIES.

Revise Section 803.00 to the Standard Specifications to read:

If this Contract requires the services of an Electrical Contractor, the Contractor shall be responsible at his/her own expense for locating existing IDOT electrical facilities prior to performing any work. If this Contract does not require the services of an Electrical Contractor, the Contractor may request one free locate for existing IDOT electrical facilities from the District 1 Electrical Maintenance Contractor prior to the start of any work. Additional requests may be at the expense of the Contractor. The location of underground traffic facilities does not relieve the Contractor of their responsibility to repair any facilities damaged during construction at their expense.

The exact location of all utilities shall be field verified by the Contractor before the installation of any components of the traffic signal system. For locations of utilities the local Counties or Municipalities may need to be contacted, in the City of Chicago contact D.I.G.G.E.R. at (312) 744-7000 and for all other locations contact J.U.L.I.E. at 1-800-892-0123.

ELECTRIC SERVICE INSTALLATION.

Revise Section 805.00 of the Standard Specifications to read:

Description. This work shall consist of all materials and labor required to install, modify, or extend the electric service installation. All installations shall meet the requirements of the details in the "District 1 Standard Traffic Signal Design Details" and applicable portions of the Specifications.

Materials.

a. General. The completed control panel shall be constructed in accordance with UL Std. 508, Industrial Control Panel, and carry the UL label. Wire terminations shall be UL listed.

b. Enclosures.

- 1. Pole Mounted Cabinet. The cabinet shall be UL 50, NEMA Type 4X unfinished single door design, fabricated from minimum 2.03 mm (0.080-inch) thick Type 5052 H-32 aluminum. Seams shall be continuous welded and ground smooth. Stainless steel screws and clamps shall secure the cover and assure a waterlight seal. The cover shall be removable by pulling the continuous stainless steel hinge pin. The cabinet shall have an oil-resistant gasket and a lock kit shall be provided with an internal O-ring in the locking mechanism assuring a waterlight and dust-tight seal. The cabinet shall be sized to adequately house all required components with extra space for arrangement and termination of wiring. A minimum size of 350 mm (14-inches) high. 225 mm (9-inches) wide and 200 mm (8-inches) in depth is required. The cabinet shall be channel mounted to a wooden utility pole using assemblies recommended by the manufacturer.
- 2. Ground Mounted Cabinet. The cabinet shall be UL 50, NEMA Type 3R unfinished single door design with back panel. The cabinet shall be fabricated from Type 5052 H-32 aluminum with the frame and door 3.175 mm (0.125-inch) thick, the top 6.350 mm (0.250-inch) thick and the bottom 12.70 mm (0.500-inch) thick. Seams shall be continuous welded and ground smooth. The door and door opening shall be double flanged. The door shall be approximately 80% of the front surface, with a full length tamperproof stainless steel 1.91 mm (.075-inch) thick hinge bolted to the cabinet with stainless steel carriage bolts and nylocks nuts. The locking mechanism shall be slam-latch type with a keyhole cover. The cabinet shall be sized to adequately house all required components with extra space for arrangement and termination of wiring. A minimum size of 1000 mm (40-inches high), 400 mm (16-inches) wide and 375 mm (15-inches) in depth is required. The cabinet shall be mounted upon a square Type A concrete foundation as indicated on the plans. The foundation is paid for separately.
- c. Surge Protector. Overvoltage protection, with LED indicator, shall be provided for the 120 volt load circuit by the means MOV and thermal fusing technology. The response time shall be <5n seconds and operate within a range of -40C to +85C. The surge protector shall be UL 1449 Listed.
- d. Circuit Breakers. Circuit breakers shall be standard UL listed molded case, thermal-magnetic bolt-on type circuit breakers with trip free indicating handles. 120 volt circuit breakers shall have an interrupting rating of not less than 65,000 rms symmetrical amperes. Unless otherwise indicated, the main disconnect circuit breaker for the traffic signal controller shall be rated 60 amperes, otherwise noted on the plans, 120 V and the auxiliary circuit breakers shall be rated 10 amperes, 120 V.
- e. Fuses, Fuseholders and Power Indicating Light. Fuses shall be small-dimensional cylindrical fuses of the dual element time-delay type. The fuses shall be rated for 600 V AC and shall have a UL listed interrupting rating of not less than 10,000 rms symmetrical amperes at rated voltage. The power indicating light shall be LED type with a green colored lens and shall be energized when electric utility power is present.
- f. Ground and Neutral Bus Bars. A single copper ground and neutral bus bar, mounted on the equipment panel shall be provided. Ground and neutral conductors shall be separated on the bus bar. Compression lugs, plus 2 spare lugs, shall be

sized to accommodate the cables with the heads of the connector screws painted green for ground connections and white for neutral connections.

- g Utility Services Connection. The Contractor shall notify the Utility Company marketing representative a minimum of 30 working days prior to the anticipated date of hook-up. This 30 day advance notification will begin only after the Utility Company marketing representative has received service charge payments from the Contractor. Prior to contacting the Utility Company marketing representative for service connection, the service installation controller cabinet and cable must be installed for inspection by the Utility Company.
- h. Ground Rod. Ground rods shall be copper-clad steel, a minimum of 3.0 meters (10') in length, and 20mm (3/4") in diameter. Ground rod resistance measurements to ground shall be 25 ohms or less. If necessary additional rods shall be installed to meet resistance requirements at no additional cost to the contract.

Installation

- a General. The Contractor shall confirm the orientation of the traffic service installation and its door side with the engineer, prior to installation. All conduit entrances into the service installation shall be sealed with a pliable waterproof material
- b Pole Mounted. Brackets designed for pole mounting shall be used. All mounting hardware shall be stainless steel. Mounting height shall be as noted on the plans or as directed by the Engineer.
- c Ground Mounted. The service installation shall be mounted plumb and level on the foundation and fastened to the anchor bolts with hot-dipped galvanized or stainless steel nuts and washers. The space between the bottom of the enclosure and the top of the foundation shall be caulked at the base with silicone.

Basis of Payment. The service installation shall be paid for at the contract unit price each for SERVICE INSTALLATION of the type specified which shall be payment in full for furnishing and installing the service installation complete. The type A foundation which includes the ground rod shall be paid for separately. SERVICE INSTALLATION, POLE MOUNTED shall include the 20mm (3/4") grounding conduit, ground rod, and pole mount assembly. Any changes by the utility companies shall be approved by the engineer and paid for as an addition to the contract according to Article 109.05 of the Standard Specifications.

GROUNDING OF TRAFFIC SIGNAL SYSTEMS.

Revise Section 807.00 of the Standard Specifications to read:

General. All traffic signal systems, equipment and appurtenances shall be properly grounded in strict conformance with the NEC. See IDOT District 1 Traffic Signal detail plan sheet for additional information.

The grounding electrode system shall include a ground rod installed with each traffic signal controller concrete foundation and all mast arm and post concrete foundations. An additional ground rod will be required at locations were measured resistance exceeds 25 ohms. Ground rods are included in the applicable foundation paid item and will not be paid for separately.

Testing shall be according to Section 801.11.

- a) The grounded conductor (neutral conductor) shall be white color coded. This conductor shall be bonded to the equipment grounding conductor only at the Electric Service Installation. All power cables shall include one neutral conductor of the same size.
- b) The equipment grounding conductor shall be green color coded. The following is in addition to Section 801.14 of the Standard Specifications.
 - 1) Equipment grounding conductors shall be XLP insulated No. 6, unless otherwise noted on the plans, and bonded to the grounded conductor (neutral conductor) only at the Electric Service Installation. The equipment grounding conductor is paid for separately and shall be continuous. The Earth shall not be used as the equipment grounding conductor.
 - 2) Equipment grounding conductors shall be bonded, using a Listed grounding connector, to all traffic signal mast arm poles, traffic signal posts, pedestrian posts, pull boxes, handhole frames and covers and other metallic enclosures throughout the traffic signal wiring system, except where noted herein. A Listed electrical joint compound shall be applied to all conductors terminations, connector threads and contact points.
 - 3) All metallic and non-metallic raceways containing traffic signal circuit runs shall have a continuous equipment grounding conductor, except raceways containing only detector loop lead-in circuits, circuits under 50 volts and/or fiber optic cable will not be required to include an equipment grounding conductor.
- c) The grounding electrode conductor shall be similar to the equipment grounding conductor in color coding (green) and size. The grounding electrode conductor is used to connect the ground rod to the equipment grounding conductor and is bonded to ground rods via exotnermic welding, listed pressure connectors, listed clamps or other approved listed means.

HANDHOLES.

Add the following to Section 814.00 of the Standard Specifications:

All handholes shall be concrete, poured in place, with inside dimensions of 549 mm (21-1/2") minimum. Frames and lid openings shall match this dimension. The cover of the handhole frame shall be labeled "Traffic Signals" with legible raised letters.

For grounding purposes the handhole frame shall have provisions for a 15.875 mm (7/16") diameter stainless bolt cast into the frame. The covers shall have a stainless steel threaded stint extended from the eye hook assembly for the purpose of attaching the grounding conductor to the handhole cover.

The minimum wall thickness for heavy duty hand holes shall be 300 mm (12 inches).

All conduits shall enter the handhole at a depth of (760 mm) 30" except for the conduits for detector loops when the handhole is less than (1.52 m) 5' from the detector loop.

Steel cable hooks shall be coated with hot-dipped galvanization in accordance with AASHTO Specification M111. Hooks shall be a minimum of 9.525 mm (3/8") diameter and extend into the handhole at least 150 mm (6 inches). Hooks shall be placed a minimum of 300 mm (12 inches) below the lid or lower if additional space is required.